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Abstract

Researchers increasingly have access to two types of data: (i) large observational datasets
where treatment (e.g., class size) is not randomized but several primary outcomes (e.g.,
graduation rates) and secondary outcomes (e.g., test scores) are observed and (ii) experi-
mental data in which treatment is randomized but only secondary outcomes are observed.
We develop a new method to estimate treatment effects on primary outcomes in such set-
tings. We use the difference between the secondary outcome and its predicted value based
on the experimental treatment effect to measure selection bias in the observational data.
Controlling for this estimate of selection bias yields an unbiased estimate of the treatment
effect on the primary outcome under a new assumption that we term latent unconfounded-
ness, which requires that the same confounders affect the primary and secondary outcomes.
Latent unconfoundedness weakens the assumptions underlying commonly used surrogate
estimators. We apply our estimator to identify the effect of third grade class size on stu-
dents’ outcomes. Estimated impacts on test scores using OLS regressions in observational
school district data have the opposite sign of estimates from the Tennessee STAR exper-
iment. In contrast, selection-corrected estimates in the observational data replicate the
experimental estimates. Our estimator reveals that reducing class sizes by 25% increases
high school graduation rates by 0.7 percentage points. Controlling for observables does
not change the OLS estimates, demonstrating that experimental selection correction can
remove biases that cannot be addressed with standard controls.
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1 Introduction

As observational data become more widely available, researchers seeking to estimate treatment

effects increasingly have access to two types of data: (i) large observational datasets where

treatments and a broad range of outcomes are observed, but treatment is not randomized and

(ii) smaller experimental datasets where treatment is randomly assigned, but only a subset of

outcomes are observed. For example, in the context of education, many analysts have been

interested in identifying the causal effects of classroom sizes in elementary school on high school

graduation rates. Observational data with information on class sizes and graduation rates are

now widely available from school districts’ administrative records. But causal inference using

these data is challenging because of selection biases arising from non-random assignment to

classrooms. Causal inference is more straightforward in experimental data – such as the widely

studied Project STAR class size experiment (e.g., Krueger [1999]) – but experimental datasets

often do not contain information on outcomes such as graduation rates because they are observed

with long lags.

The most common method of identifying the causal effect of a treatment (e.g., class size

reduction) on the primary outcome of interest (e.g., graduation rates) in such settings is to use

secondary intermediate outcomes that are observed in the experimental data (e.g., test scores)

as statistical surrogates [Prentice, 1989, Athey et al., 2019]. The surrogate approach, illustrated

in Figures 1a-b below, uses the observational dataset to estimate the relationship between the

primary outcome (Y P
i ) and secondary outcome (Y S

i ), and then estimates the impact of the

treatment of interest (Wi) on Y P
i based on that relationship. Under the surrogacy assumptions

that (i) Wi only affects Y P
i through its impact on Y S

i and (ii) there are no unobserved confounders

that affect the relationship between Y S
i and Y P

i in the observational sample, this approach

provides an unbiased estimate of the effect of Wi on Y P
i .

The surrogate approach has been applied in many fields, from economics to product testing

to public health [Alonso et al., 2006, Adams et al., 2006, D’Agostino et al., 2006, Gupta et al.,

2019]. Yet there remains concern that the surrogacy assumptions may be violated in these

settings. For example, test scores are a widely used surrogate in labor economics, but researchers

have identified other pathways through which childhood interventions affect long-term outcomes

outside test scores, such as non-cognitive skills [Heckman et al., 2006, Chetty et al., 2011].
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Figure 1: Comparison of Experimental Selection Correction and Surrogate Models

A. Experimental Data in Surrogate Model

Test Scores (Y S
i )

Class Size (Wi) HS Graduation (Y P
i )

B. Observational Data in Surrogate Model

Test Scores (Y S
i )

Class Size (Wi) HS Graduation (Y P
i )

C. Experimental Data in Experimental Selection Correction (ESC) Model

Test Scores (Y S
i )

Class Size (Wi) HS Graduation (Y P
i )

D. Observational Data in Experimental Selection Correction (ESC) Model

Test Scores (Y S
i )

Class Size (Wi) HS Graduation (Y P
i )

Unobserved Confounder (Ui)

Notes: This figure depicts the assumptions and informational structures underlying the surrogate and Experimen-
tal Selection Correction (ESC) estimators using directed acyclic graphs. Solid circles denote variables observed
in the data; empty circles with lines denote unobserved variables. Panels A and B depict the experimental and
observational data in the surrogate approach, while Panels C and D show the same for the ESC estimator. In the
experimental data (Panels A and C), class size

(
Wi

)
is randomly assigned, ensuring that there is no unobserved

confounder when estimating the treatment effect on test scores
(
Y S
i

)
. However, the primary outcome of interest,

high school graduation
(
Y P
i

)
, is unobserved in the experimental sample. The ESC estimator requires that Wi

is observed in the observational sample, whereas the surrogate estimator does not. The identifying assumptions
underlying the surrogate estimator are that (i) any effect of Wi on the primary outcome Y P

i operates exclusively
through the secondary outcome Y S

i (Panels A and B) and (ii) there are no unobserved confounders that affect
the relationship between Y S

i and Y P
i in the observational sample (Panel C). The ESC estimator relaxes these

assumptions by (i) permitting a direct effect of Wi on Y P
i (Panels C and D) and (ii) allowing for an unobserved

confounder
(
Ui

)
that influences both class size and graduation outcomes in the observational data (Panel D).
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In this paper, we develop an “Experimental Selection Correction” (ESC) estimator that

identifies the effect of Wi on Y P
i even when the surrogacy assumptions are violated, as illustrated

in Panels C and D of Figure 1. Our estimator relies on more information than the surrogacy

approach: it requires that the observational dataset contains information not just on the primary

and secondary outcomes, Y S
i and Y P

i , but also on treatment Wi (with variation in treatment

across observations). With this additional information, we show how one can identify the effect

of Wi on Y P
i under strictly weaker assumptions than those required for the surrogacy approach.

To illustrate the general information scheme we analyze, consider a setting with two datasets:

(i) the Project STAR experimental data, where class size is randomized and we observe test

scores (Y S
i ) but not high school graduation rates (Y P

i ), and (ii) observational data from the New

York City school district, in which class size is observed but not randomized (and hence likely

to be correlated with both observed and unobserved characteristics) and we observe both test

scores and graduation rates.

In the STAR experimental data, we can estimate the treatment effect of small class size (Wi)

on 3rd grade test scores by regressing test scores on an indicator for being assigned to a small

class (with 7 fewer students on average) in 3rd grade. Column 1 of Table 1 shows that being

assigned to a small class in 3rd grade increases students’ end-of-3rd-grade test scores by 0.19

standard deviations (SD). We cannot, however, estimate the effect of class size on high school

graduation in the STAR data, because we do not observe graduation in the STAR sample.1

In the observational NYC sample, estimating an analogous OLS regression of test scores on

an indicator for being assigned to a small class yields an estimate of −0.12 SD (s.e. 0.01, Column

2 of Table 1). Children in smaller classes are also 1.76 percentage points (s.e. 0.29) less likely to

graduate from high school. These negative estimates of the causal effect of class size reductions

are implausible both in the light of the positive experimental Project STAR estimates and based

on a priori beliefs. Of course, the OLS estimates may be confounded because class size is not

randomly assigned in NYC. For example, students with needs for additional educational support

may be assigned to smaller classes. Our goal is to obtain an unconfounded estimate of Wi on

Y P
i , i.e., to fill in the lower left box in Table 1.

1Researchers attempted to follow the STAR students longitudinally, but were only able to collect information
on high school graduation for 43% of students, whose characteristics are not representative of the experimental
sample as a whole. This underscores the challenges of tracking primary outcomes in experiments and motivates
the approach we take here of combining observational administrative records and experimental data.
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Table 1: Estimated Effects of Small Class Assignment in STAR vs. NYC Data

Sample: Exp. (STAR) Obs. (New York) Exp. + Obs. (STAR + NYC)

Estimator: OLS OLS Exp. Selection Correction (ESC)

Outcome

3rd Grade Test Score
0.19

(0.04)

−0.12

(0.01)

0.19

(0.04)

(secondary outcome)

HS Graduation ?
−1.76

(0.29)

0.69

(0.34)

(primary outcome)

Notes: This table reports point estimates (with standard errors in parentheses) of the effect of assignment
to a small class on end-of-3rd-grade test scores and high school graduation rates. Each cell reports es-
timates from a separate model. Columns 1 and 2 present ordinary least squares (OLS) estimates using
the experimental STAR sample and the observational New York sample, respectively. Column 3 combines
both experimental and observational data using the Experimental Selection Correction (ESC) estimator.
The missing entry denoted by “?” for High School Graduation in the STAR sample reflects the absence
of information on graduation in the STAR dataset. The specification in Column 1 includes school fixed
effects (since all STAR students are in the same cohort), while Columns 2 and 3 include both school and
cohort fixed effects.

We obtain an unconfounded estimate of the effect of Wi on Y P
i in the observational data

by using the difference in the distribution of test scores (Y S
i ) conditional on treatment in the

observational and experimental samples to adjust for selection. In linear models, the ESC

estimator can be implemented in three straightforward steps (see Appendix for code). First,

we estimate the effect of class size on test scores (τS) in the experimental sample using a linear

regression, as in Column 1 of Table 1.2 Second, for all students in the observational sample,

we calculate the difference between the secondary outcome (test score) and the predicted test

score based on the student’s class size (the residual αS
i = Y S

i − τSWi), with the parameter τS

in the prediction model coming from the experimental sample. Finally, we regress the primary

outcome (graduation rates) on treatment (class size) in the observational data, controlling for

the residual αS
i .

We show that this control function approach identifies the causal effect of Wi on Y P
i under

three assumptions: (i) random assignment (or unconfoundedness) in the experimental sample;

2We focus on the case where treatment is randomly assigned in an experiment, but any quasi-experimental
research design that yields an unbiased estimate of the treatment effect on the secondary outcome τS can be
used to implement the ESC estimator.
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(ii) a standard external validity assumption; and (iii) a new assumption that we term latent

unconfoundedness. External validity requires that (conditional on pretreatment observables),

the treatment effect in the experimental sample is the same as the treatment effect in the pop-

ulation represented by the observational sample [Shadish et al., 2002, Hotz et al., 2005]. Latent

unconfoundedness requires that the unobserved confounders that affect the primary outcome

(graduation rates) are the same as those that affect the secondary outcome (test scores). Under

this assumption, the difference between the actual secondary outcome in the observational data

and the predicted secondary outcome based on the experimental estimate (αS
i ) fully captures

any selection bias that affects the primary outcome. Thus, controlling for αS
i is sufficient to

identify the causal effect of Wi on Y P
i . Intuitively, αS

i functions as a selection correction, similar

to parametric selection correction approaches dating to Heckman [1979] and control function

methods (Heckman and Robb [1985], Imbens and Newey [2009], Wooldridge [2015]).

The main theoretical result of this paper is that the treatment effect of Wi on Y P
i is point-

identified under latent unconfoundedness, external validity, and random assignment in the ex-

perimental sample (without any functional form or distributional assumptions). We also present

a control function approach to estimation for the general, nonlinear case. A corollary of our main

result is that if an observational estimate of the treatment effect on the secondary outcome (Y S
i )

is the same as the experimental estimate, then under linearity, latent unconfoundedness and

external validity together imply that the observational estimator is unconfounded for the pri-

mary outcome. Many empirical studies show that an observational and experimental estimator

yield similar estimates for secondary outcomes and then use this as a heuristic justification for

estimating impacts on a broader range of primary outcomes using the observational estimator

(e.g., Chetty et al. [2014], Bleemer [2022]). Our analysis makes precise the conditions—most

importantly, latent unconfoundedness across outcomes—under which this heuristic is justified.

We also propose falsification tests for the underlying identifying assumptions that make use

of additional “holdout” post-treatment outcomes (Y H
i ) observed in both datasets. One could use

these measures as additional secondary outcomes. An alternative is to use them to validate the

estimator instead of using them to implement the selection correction itself. Tests of whether

our ESC estimator that uses 3rd grade scores for selection correction matches experimental

estimates for 4th and 5th grade test scores (holdout outcomes) serve as tests for whether the

underlying latent unconfoundedness and external validity assumptions jointly hold.
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We apply the experimental selection correction estimator to estimate the causal effects of

3rd grade class size reduction on high school graduation rates in the New York City data, using

end-of-3rd-grade test scores as the secondary outcome for the selection correction. We use the

Tennessee STAR sample as the experimental sample in which we estimate the treatment effect

of class size reduction on 3rd grade test scores.3

Figure 2: Estimated Treatment Effects of Assignment to Small Class in 3rd Grade
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Notes: This figure plots estimates of the effect of being assigned to a small class in 3rd grade on two outcomes:
standardized test scores (left panel) and high school (HS) graduation rates (right panel). In the left panel,
effect sizes are reported in standard deviations of test scores; in the right panel, they are reported in percentage
points of HS graduation. The “Experimental Estimate” series presents estimates from OLS regressions with
school fixed effects in the STAR data. The “Observational OLS” estimate is obtained from OLS regressions
with school and cohort fixed effects in the NYC observational data. The “Experimental Selection Correction”
(ESC) estimate adjusts the observational OLS estimate using a selection correction term estimated using the
experimental sample as described in the text. Vertical bars denote 95% confidence intervals.

3Naturally, one may have concerns about the external validity of the Tennessee sample for the New York City
data. Both samples reflect a relatively low-income population with fairly similar demographic characteristics.
Furthermore, we show that adjusting for remaining differences in observable demographics does not affect our
conclusions meaningfully.
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As discussed above, standard OLS regression estimates of 3rd grade test scores on an indi-

cator for small class size in the NYC data yield a treatment effect estimate of −0.12 SD. The

ESC estimator (shown in Column 3 of Table 1) yields an estimate of 0.19 SD, coinciding with

the STAR experimental estimate by construction. The ESC treatment effect estimates for test

scores in grades 4-8 (holdout outcomes) are nearly identical to the STAR experimental estimates

(Figure 2). Notably, they capture the well-known “fadeout” pattern on test score impacts doc-

umented in prior work (Deming [2009], Chetty et al. [2011], Cascio and Staiger [2012]). These

results support the identification assumptions underlying our method and more broadly serve

to validate the ESC approach.

Finally, the ESC estimator implies that assignment to a small class in 3rd grade (which has

25% fewer students on average) increases the probability of graduating from a New York City

public high school by 0.69 percentage points (pp), relative to a sample mean of 51.4%. This

estimate is one of the first estimates of the causal effect of class size reduction on high-school

graduation rates in the U.S.

In contrast, the standard OLS estimator yields significant negative estimates on test scores in

later grades and on high school graduation rates. When we control for observable characteristics,

the OLS estimates remain negative, while the ESC estimates remain similar to the experimental

estimates (Figure 3). These findings demonstrate how our proposed experimental selection

correction can detect and adjust for selection biases that are difficult to address with conventional

methods in observational data without relying on strong surrogacy assumptions.

In addition to the literature on statistical surrogates, our analysis relates to other studies

that have examined similar observation schemes, including Rosenman et al. [2018, 2020], Kallus

and Mao [2020], Mealli and Pacini [2013] and Imbens et al. [2025]. Rosenman et al. [2018] focuses

on the problem where assignment is unconfounded in both samples and combining the samples

increases precision. Rosenman et al. [2020] allow for unobserved confounders in the observational

sample and consider shrinkage estimators to decrease bias. Kallus and Mao [2020] analyze the

case where assignment in the combined experimental and observational sample is unconfounded,

but not in each sample separately. Kallus et al. [2018] focus on a case where the same variables

(including the primary outcome) are observed in the two samples, but where unconfoundedness is

violated in the observational sample and the experimental sample is used to estimate bias. Mealli

and Pacini [2013] focuses on an instrumental variables setting where the presence of multiple
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outcomes improves estimates. Our approach also relates to the Changes-in-Changes estimator

in Athey and Imbens [2006]. For a unit in the observational sample, the control function is

essentially the rank of the secondary outcome in the distribution of secondary outcomes in

the experimental sample with the same treatment. Under our maintained assumptions here,

differences in the estimated effect of the treatment between the experimental and observational

sample are attributed to violations of unconfoundedness in the observational data.

The paper is organized as follows. Section 2 analyzes a linear model that captures the

intuition underlying our approach. Section 3 presents the identification result for the general

case. Section 4 discusses estimation. Section 5 presents the application. Section 6 concludes.

2 Linear Models

In this section, we introduce our key identifying assumption and a control function estimator in

the context of linear models. The linear case simplifies exposition and captures the key ideas

that apply in more general models.

2.1 Setup

Using the potential outcome set up for observational studies introduced by Rubin [1974] (see

Imbens and Rubin [2015] for a textbook discussion), let the pair of potential outcomes for the

primary outcome for unit i be denoted by Y P
i (0) and Y P

i (1), where the superscript “P” stands

for “Primary”. In many applications, Y P
i is a long-term outcome; in our application, it is a

binary indicator for high school graduation. The treatment received by unit i is Wi ∈ {0, 1}. In

our application, Wi is an indicator for small class size in third grade, with Wi = 1 indicating a

small class size and Wi = 0 indicating a regular class size. There is also a secondary outcome,

with the pair of potential outcomes for unit i denoted by Y S
i (0) and Y S

i (1), where the superscript

“S” stands for “Secondary”. In our application, Y S
i is a student’s end-of-third-grade test score.

We focus in this section on the case where both the primary and secondary outcomes are

scalars, but both may be vector-valued (e.g., test scores in multiple grades could be used as

secondary outcomes).

The realized values for the primary and secondary outcomes are Y P
i ≡ Y P

i (Wi) and Y S
i ≡

Y S
i (Wi). We may also observe pretreatment variables, denoted by Xi, that are known not to be
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affected by the treatment.

We focus on identifying the average treatment effect on the primary outcome,

τP ≡ E
[
Y P
i (1)− Y P

i (0)
]
, (2.1)

although other estimands such as the average effect on the treated can be accommodated in our

set up as well. The average treatment effect on the secondary outcome, τS ≡ E
[
Y S
i (1)− Y S

i (0)
]
,

is, for the purpose of the current study, not of intrinsic interest.

We have two samples to draw on to estimate τP, as in the literature on combining datasets,

e.g., Hotz et al. [2005], Ridder and Moffitt [2007], Pearl et al. [2014]. The first is an observational

study that is a random sample from the population of interest. For all units in this observational

sample, we observe the quadruple (Wi, Y
S
i , Y

P
i , Xi).

The second sample is a possibly selective sample from the same population, with random

assignment of treatment Wi. For all units in this experimental sample, we observe the triple

(Wi, Y
S
i , Xi), but not the primary outcome Y P

i .

Let Gi ∈ {E,O}, be an indicator for the sample a unit is drawn from. Then we can concep-

tualize the combined sample as a random sample of size N from an artificial super-population

for which we observe the quintuple (Wi, Gi, Y
S
i , Y

P
i 1Gi=O, Xi), where 1Gi=O is a binary indicator,

equal to 1 if Gi = O and equal to 0 if Gi = E.

2.2 A Control Function Estimator

Suppose we have a linear model for the secondary potential outcomes in combination with a

constant treatment effect τS:

Y S
i (0) = X>

i γ
S + αS

i , Y S
i (1) = Y S

i (0) + τS.

This model holds in both the experimental and observational samples. However, the properties

of the unobserved component αS
i differ between the two samples. In the experimental sample,

randomization guarantees the following conditional independence condition:4

Wi ⊥⊥ αS
i

∣∣∣ Xi, Gi = E.

4In fact the randomization implies an even stronger condition, Wi ⊥⊥ αS
i , Xi|Gi = E, but we do not need that

condition here.
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In the observational study, the same conditional independence does not generally hold:

Wi 6⊥⊥ αS
i

∣∣∣ Xi, Gi = O.

We specify a similar linear model for the primary outcome, but allow the coefficients to be

different from those of the model for the secondary outcome:

Y P
i (0) = X>

i γ
P + αP

i , Y P
i (1) = Y P

i (0) + τP.

Again, the unobserved component might be correlated with the treatment in the observational

sample:

Wi 6⊥⊥ αP
i

∣∣∣ Xi, Gi = O,

that is, Wi is again endogenous.

To identify the treatment effect on the primary outcome τP in the observational sample,

we make the following assumption that links the endogeneity problems for the primary and

secondary outcomes:

αP
i = δαS

i + εPi , with Wi ⊥⊥ εPi

∣∣∣ Xi, α
S
i , Gi = O. (2.2)

This assumption requires that the component of the residual in the primary outcome that is

not explained by the residual in the secondary outcome, εPi ≡ αP
i − E[αP

i |αS
i ], is orthogonal to

treatment. The key substantive restriction captured by this condition is that the unobserved

confounders that affect the secondary outcome are the same as those that affect the primary

outcome. This assumption, which we term latent unconfoundedness, is the key to identifying τP

in the general case below as well.

We now show how this latent unconfoundedness assumption allows us to identify τP using

a simple control function approach in the linear case. First, we exploit randomization in the

experimental sample to estimate τS and γS using ordinary least squares regression. Denote these

least squares estimates by τ̂S and γ̂S.

Next, we estimate the residual αS
i for the units in the observational sample as

α̂S
i = Y S

i −Wiτ̂
S −X>

i γ̂
S. (2.3)
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If the assignment to treatment in the observational sample were random (and assuming the

linear model is correct), the population value of these residuals αS
i would be uncorrelated with

the treatment indicator in the observational sample.

When treatment assignment is non-random, we can use the association between the sec-

ondary outcome residuals αS
i and the treatment to correct for selection bias in the estimating

equation for the primary outcome. We do so by including αS
i as a control variable in an ordi-

nary least squares regression of the primary outcome on treatment. To see why this yields a

consistent estimate of τP, observe that we can use the linear representation in (2.2) to write the

primary outcome as:

Y P
i = Wiτ +X>

i γ + δαS
i + εPi , with Wi ⊥⊥ εPi

∣∣∣ Xi, α
S
i , Gi = O. (2.4)

Because the error term εPi is orthogonal to treatment in this specification, estimating this equa-

tion using OLS yields a consistent estimator for τP under our assumptions.

3 The General Case

In this section, we generalize the linear example above to accommodate (i) non-linear models

and (ii) multiple secondary outcomes.

We are interested in causal estimands defined for the population of interest. Such estimands

include simple average treatment effects, but more generally also the average effect of a policy

that assigns the treatment to individuals in this population on the basis of covariates (e.g.,

Manski [2004], Dehejia [2005], Hirano and Porter [2009], Athey and Wager [2017], Zhou et al.

[2018]). For expositional simplicity, we focus here on average treatment effects. Define

τ tg ≡ E
[
Y t
i (1)− Y t

i (0)
∣∣Gi = g

]
, (3.1)

to be the average effect of the treatment on outcome t ∈ {S,P} for group g ∈ {O,E}. The

superscripts on the estimands denote the outcome, and subscripts denote the population. The

primary estimand we focus on in this paper is the average effect of the treatment on the primary

outcome in the observational study population:

τ ≡ τPO ≡ E
[
Y P
i (1)− Y P

i (0)
∣∣Gi = O

]
, (3.2)

where we drop the subscript and superscript to simplify the notation.
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3.1 Three Maintained Assumptions

There are three key features of our set up. First, we are interested in the population that the

units in the observational study were drawn from. That is, the observational study has external

validity.

Assumption 1. (External Validity of the Observational Study) The observational

sample is a random sample of the population of interest.

This can be thought of as simply defining the estimand in terms of the population distribution

underlying the observational sample.

Second, we maintain throughout the paper the assumption that the treatment in the exper-

imental sample is unconfounded.

Assumption 2. (Internal Validity of the Experimental Sample) For w = 0, 1,

Wi ⊥⊥
(
Y P
i (w), Y S

i (w)
) ∣∣∣ Xi, Gi = E. (3.3)

Although internal validity of the experimental sample is guaranteed by design, external valid-

ity of the experimental study does not follow. We assume that conditional on the pretreatment

variables we have external validity (Hotz et al. [2005]):

Assumption 3. (Conditional External Validity) The experimental study has conditional

external validity if

Gi ⊥⊥
(
Y P
i (0), Y P

i (1), Y S
i (0), Y S

i (1)
) ∣∣∣ Xi. (3.4)

This assumption implies that if we find systematic differences between in differences in

average outcomes by treatment status conditional on covariates between the experimental and

observational sample, these differences must arise from violations of unconfoundedness for the

observational sample.

The first result is that these three maintained assumptions are in general not sufficient for

point-identification of the average effect of interest. Of course this does not mean that these

assumptions do not have any identifying power. They do in fact imply non-trivial identified sets

in the spirit of the work by (Manski [1990]).
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Lemma 1. The combination of Assumptions 1-3 is not sufficient for point-identification of τP.

The proof for this result is given in the appendix.

Next, let us briefly mention a common assumption that we do not wish to make in this

context. Specifically, we consider the assumption that assignment in the observational study is

unconfounded. For w = 0, 1,

Wi ⊥⊥
(
Y S
i (w), Y P

i (w)
) ∣∣∣ Xi, Gi = O, (3.5)

This assumption is made, for example, in Rosenman et al. [2018]. This assumption is sufficient

for identification of τ , but it is stronger than necessary. Intuitively it implies that we do not need

the experimental sample for identification because under unconfoundedness the observational

sample is sufficient for identification of the average treatment effect. However, the experimental

sample may still be useful for precision.

3.2 Latent Unconfoundedness

Suppose that we reject the combination of Assumptions 2-3 and unconfoundedness (3.5). If we

maintain unconfoundedness in the experimental sample (Assumption 2), it must be that either

conditional external validity in the experimental study (Assumption 3), or unconfoundedness

in the observational study (3.5) must be violated. In many cases we may wish to maintain

conditional external validity and interpret the finding that the combination does not hold as

evidence that unconfoundedness in (3.5) does not hold for the observational study.

The fundamental idea behind our approach, although not the implementation, can be seen

as related to that in a Difference-In-Differences (Card [1990], Card and Krueger [1994], Angrist

and Pischke [2008]) set up where the initial (pre-treatment) differences between a treatment and

control group are used to adjust post-treatment differences between the treatment and control

group. More specifically, it relates to the Changes-In-Changes approach in Athey and Imbens

[2006] where functional form assumptions are avoided. Here initial differences in treatment

effects between an experimental and observational study are used to adjust subsequent treatment

effects for the observational study.

They key additional assumption that links the biases between adjusted comparisons for the

primary and secondary outcomes, is the following.
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Assumption 4. (Latent Unconfoundedness)

For w ∈ {0, 1},

Wi ⊥⊥ Y P
i (w)

∣∣∣ Xi, Y
S
i (w), Gi = O. (3.6)

This assumption is both novel as well as critical in the current discussion, so we offer some

remarks.

Remark 1. Compared to a regular unconfoundedness assumption, we add the variable Y S
i (w) to

the conditioning set. At first this may appear to be an innocuous addition. However, following

the standard approach to exploiting unconfoundedness assumptions, we see that this is not the

case. Typically we use an unconfoundedness assumption to create subpopulations defined by the

conditioning variables, and then compare treated and control units within those subpopulations.

To be specific, suppose we wish to estimate E[Y P
i (1)|Gi = O]. We would first estimate the condi-

tional expectation µ(yS, x) = E[Y P
i (1)|Y S

i (1) = yS,Wi = 1, Xi = x,Gi = O]. Then, in the second

step, we would average this over the marginal distribution of (Y S
i (1), Xi) in the observational

sample. However, in the observational sample we only see draws from the conditional distribu-

tion of (Y S
i (1), Xi) given Wi = 1, and this is not the same distribution because of the failure of

unconfoundedness in the observational sample. To address this, we need to exploit the presence

of the experimental sample.

Remark 2. The precise version of the unconfoundedness assumption here is slightly different

from than the (stronger) unconfoundedness assumption in, say, Rosenbaum and Rubin [1983]

where it is assumed that Wi is independent of the full set of Y P
i (0), Y P

i (1)). It is what is referred

to in Imbens [2000] as “weak unconfoundedness.”

To highlight the link to the control function literature (Heckman [1979], Heckman and Robb

[1985], Imbens and Newey [2009], Wooldridge [2010], Athey and Imbens [2006], Kline and Walters

[2019], Mogstad et al. [2018], Mogstad and Torgovitsky [2018], Wooldridge [2015]), let us model

the primary and secondary potential outcomes as

Y P
i (w) = hP(w, νi, Xi), and Y S

i (w) = hS(w, ηi, Xi),

with the function hS(w, η, x) strictly monotone in η. In the context of this model we can write

the latent unconfoundedness assumption as

Wi ⊥⊥ νi

∣∣∣ Xi, ηi, Gi = O.
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Although it is not generally true that Wi ⊥⊥ νi|Xi, Gi = O (without conditioning on ηi), adding

ηi to the conditioning set restores the exogeneity of Wi in the observational sample.

It is useful to contrast this with a control function in a nonparametric instrumental variables

setting (e.g., Imbens and Newey [2009]), where the two models are

Y P
i (w) = hP(w, νi, Xi), and Wi(z) = r(z, ηi, Xi),

with r(z, η, x) strictly monotone in η. The key assumption here is that

Wi ⊥⊥ νi

∣∣∣ Xi, ηi.

The model relating the outcome of interest and the endogenous regressor is essentially the same

in the two settings, Y P
i (w) = hP(w, νi, Xi). In both cases we address the endogeneity by con-

ditioning on an additional variable, the control variable ηi. This control variable is estimated

using an auxiliary model. This auxilliary model differs between the set up in the current paper

and the instrumental variables setting Imbens and Newey [2009]. In the Imbens-Newey nonpara-

metric instrumental variables setting we model the relation between the endogenous regressor

and an additional variable, the instrument, and deriving the control variable from that relation.

In the current setting we model the relation between the secondary outcome and the endoge-

nous regressor and deriving the control variable from that relation. In both cases the auxiliary

model has a strict monotonicity assumption. This comparison shows one of the limitations of

the approach: the unobserved confounder ηi cannot have a dimension higher than that of the

secondary outcome.

Formally, adding Assumption 4 (latent unconfoundedness) to Assumptions 1-3 allows us to

point-identify the average effect of interest. The following theorem states our main identification

result.

Theorem 1. Suppose that Assumptions 1-4 hold, so that the experimental study is unconfounded

and has conditional external validity, and the observational study has latent unconfoundedness.

Then the average effect of the treatment on the primary outcome in the observational study is

point-identified.
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3.3 Missing At Random

There is an interesting connection between Assumptions 1-4 and the Missing At Random (MAR)

assumption in the missing data literature (Rubin [1976], Little and Rubin [2019], Rubin [1987]).

Lemma 2. Suppose that Assumptions 1-4 hold. Then:

Gi ⊥⊥ Y P
i

∣∣∣ Wi, Xi, Y
S
i . (3.7)

Because Gi = E is equivalent to an indicator that Y P
i missing, and because Wi, Xi, and Y S

i

are observed for all individuals in the sample, the conditional independence in (3.7) is equivalent

to a MAR assumption. The result does not go the other way around. The MAR assumption by

itself has no testable implications, but the combination of Assumptions 1-3 and 4 does imply

some inequality restrictions on the joint distribution of the observed variables. Kallus and Mao

[2020] starts with a MAR assumption, and uses that in combination with an unconfoundedness

assumption on the full sample to identify the average effect of the treatment for the full sample.

4 Estimation and Inference

In this section, we discuss estimation and inference. There are multiple approaches here, some of

which we discussed in the examples in Section 2. These strategies include imputation, weighting,

control function methods, and influence-function based methods. Because the model is just-

identified, all four of these methods are first-order equivalent, although they will have different

finite sample properties, see Newey [1994], Chen and Santos [2018] for a general discussion.

We focus here on the control function approach that is special to this setting with obser-

vational and experimental data. In the appendix, we discuss the imputation, weighting, and

influence function approaches, which closely resemble their equivalents in standard unconfound-

edness settings.

In the control function approach, we directly estimate the unobserved confounder. We then

estimate the average treatment effect in the observational sample adjusting for both the observed

covariates and the estimated confounder. The procedure consists of three steps.

In the first step, we estimate the conditional cumulative distribution function of the secondary

outcome, conditional on the treatment and pre-treatment variables, in the experimental sample:

FY S|W,X(yS|w, x) ≡ pr(Y S
i ≤ yS|Wi = w,Xi = x,Gi = E).
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Note that if the secondary outcome is a vector, this is a vector of conditional cumulative distri-

bution functions, demonstrating that multiple secondary outcomes can weaken the identifying

assumptions.

In the second step, we calculate for all units in the observational sample the control variable

as

ηi = FY S|W,X(Y S
i |Wi, Xi).

In the third step, we estimate the adjusted difference

E
[
E
[
Y P
i

∣∣Wi = 1, Xi, Gi = O
]
− E

[
Y P
i

∣∣Wi = 0, Xi, Gi = O
]∣∣Gi = O

]
,

which by the assumptions in Theorem 1 is equal to the average causal effect τ . Here we can

use any of the conventional methods for estimating average treatment effects under uncon-

foundedness for the observational data (including matching, regression, inverse propensity score

weighting, augmented inverse propensity score weighting, or doubly robust methods), where we

use the combination of the pretreatment variables Xi and the estimated control function ηi as

the variables to be adjusted for. For example, using a imputation/regression approach, one

would estimate the conditional mean of the primary outcome in the observational sample given

treatment status, control variable, and pre-treatment variables:

γ(w, h, x) ≡ E
[
Y P
i

∣∣Wi = w, ηi = h,Xi = x,Gi = O
]
.

These estimated conditional means would then be use to estimate the average treatment effect

τ as

τ̂ cf =
1

NO
1

∑
i:Gi=O

Wiγ̂(1, η̂i, Xi)−
1

NO
0

∑
i:Gi=O

(1−Wi)γ̂(1, η̂i, Xi),

where N g
w =

∑N
i=1 1Wi=w,Gi=g. Under standard conditions (e.g., Newey [1994], Chen and Santos

[2018]) this estimator will be semiparametrically efficient and asymptotically linear and normally

distributed. From Newey [1994] it follows that the control function estimator is first order

equivalent to the imputation, weighting, and influence function estimators, and so one can use

the semiparametric efficiency bound for variance estimation. Alternatively, one can use the

regular bootstrap.
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5 Application: Effects of Class Size on Graduation

In this section, we evaluate the performance of our approach by estimating the long-term im-

pacts of reducing class sizes in elementary school. Many experimental and quasi-experimental

studies have analyzed the impacts of educational inputs – such as class size, teacher quality, and

resources – on test scores [Krueger, 1999, Kane and Staiger, 2008, Biasi et al., 2025]. Meanwhile,

observational data with information on educational inputs as well as long-term outcomes such

as high school graduation rates from school districts’ administrative records have become widely

available. We combine these two sets of information to estimate the effects of class size on high

school graduation rates.5 We first describe the data we use and then present results.

5.1 Data

We combine information from two datasets: experimental data from Tennessee STAR and ob-

servational data from the New York City public school district.

Experimental Sample: Tennessee STAR. The STAR experiment was conducted at 79 low-

income public schools in Tennessee between 1985-89. In the 1985-86 school year, 6,323 kinder-

garten students in participating schools were randomly assigned to a small (target size 13-17

students) or regular-sized (20-25 students) class within their schools. An additional 5,248 chil-

dren joined the 1985-86 entry cohort at the participating schools after kindergarten in grades

1-3. These new entrants were also randomly assigned to small vs. large classrooms within school

upon entry. Students were intended to remain in the same class type (small vs. large) through

3rd grade, at which point all students returned to regular class sizes.

In each year from grades 3-8, STAR students were administered standardized tests that

measure performance in math and reading. We standardize the average of math and reading

scores to have mean 0 and standard deviation 1 within each grade among students in the STAR

sample. We also observe information on students’ race and ethnicity, sex, and eligibility for free

or reduced-price lunch (an indicator for having low-income parents). For further information on

5A few studies have linked experimental data to administrative data from tax records and other sources to
measure impacts on outcomes such as college attendance rates and earnings (see e.g., Chetty et al. 2011 STAR,
Dynarski et al STAR, Fredrikkson et al. QJE on class size effects). However, such linkages remain challenging
and relatively rare. Our objective here is to show how one can make progress in identifying treatment effects of
interest even when direct measurement of primary outcomes in the experimental sample is infeasible.
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the STAR experiment, see Word et al. [1990] , Krueger [1999], and Chetty et al. [2011].

Observational Sample: New York City. We obtain observational information from the ad-

ministrative records of the New York City public school district for 1.76 million children in

grades 3-8 between the 1991-2009 school years. Starting from the raw data, we impose the same

sample restrictions as in Chetty et al. [2014] – such as excluding special education classrooms

and classrooms with less than 10 or more than 50 students – and additionally limit the sample

to students for whom we observe test scores throughout grades 3-8. For comparability to the

STAR treatment of dichotomous assignment to small vs. large classes, we define a “small” class

in NYC as one with 26 (the sample median) or fewer students in third grade.

We observe math and reading test scores at the end of grades 3-8, which we standardize to

have mean 0 and standard deviation within each grade in the NYC sample.6 Critically, unlike

in the STAR sample, we also observe an indicator for graduating from a NYC public high school

by 2016, which we view as the primary outcome of interest.7 We also observe information on

students’ race and ethnicity, sex, and (after the 1999 school year) eligibility for free or reduced-

price lunch. For further information on the New York City data, see Chetty et al. [2014] and

Mariano et al. [2024].

Summary Statistics. Appendix Table 1 presents summary statistics for the two samples.

Although they are from different time periods and geographic settings, the two samples overlap

on key student characteristics. Both districts serve primarily low-income students, with 61% of

students in the STAR sample and 81% of the students in the NYC sample eligible for free or

reduced-price lunches. Approximately one-third of the students are Black in both datasets, while

the New York City sample has a significantly larger share of Hispanic students than the STAR

sample. On average, there are 7.0 fewer students in third grade classrooms defined as “small” in

the New York City data and 6.7 fewer students in the classrooms of students assigned to small

classes in the STAR sample. 51% of students in New York City public schools graduated from

6Chetty et al. (2014) show that the within-grade variation in achievement in the NYC school district is com-
parable to the within-grade variation in other urban school districts nationwide, and hence is likely comparable
to that in the STAR population, which exhibits broadly similar socioeconomic characteristics.

7We can only observe whether students graduated from a high school in the New York City public school
district. 27% of students in our sample leave the NYC school district before the end of high school; we include
these students in our analysis and code them as not graduating from an NYC high school. The estimated effects
of class size reduction on graduation rates are larger in schools where fewer students leave the district, suggesting
that this missing data issue leads us to understate the overall impact of class size reduction on graduating from
any high school.
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high school, consistent with official statistics [New York State Education Department, 2025].

5.2 Results

We begin with OLS regressions of 3rd grade test scores on an indicator for being assigned to a

small class in the STAR and NYC datasets.8 We include school fixed effects in all regressions

run in the STAR sample because randomization was conducted within schools among children

who entered in a given birth cohort. We analogously include school and birth cohort fixed effects

in the NYC sample to isolate within-school and cohort variation in class size.

Table 1 (in the introduction) reports estimates from these regressions. In the STAR sample

(Column 1), small class assignment in third grade increases end-of-third-grade test scores by 0.19

SD (se= 0.04).9 In the NYC sample, the corresponding OLS estimate is -0.12 SD (se = 0.01).

The difference between these estimates implies that the observational estimates are confounded

under our maintained external validity assumption (Assumption 1).

Next, we implement the ESC estimator by estimating equation (2.4). We first calculate the

difference between actual 3rd grade test scores and predicted test scores based on the student’s

class size (αS
i = Y S

i − τSWi) in the NYC sample. We then replicate the OLS specification in

Column 2, additionally controlling for the residuals αS
i . The ESC correction yields an estimated

treatment effect of class size on third grade test scores in the NYC sample of 0.19 SD (se = 0.04),

which coincides with the experimental estimate in the STAR sample by construction (Column

3 of Table 1).10

8Throughout our analysis of the STAR data, we use initial assignment to small class (rather than actual
realized class size) as the independent variable, thereby reporting intent-to-treat estimates. Compliance with
treatment assignment was imperfect because principals had to re-balance classes on other dimensions, such as
gender composition. The ITT estimates provide the appropriate scaling for comparison to the observational
NYC sample because the difference in average class size between those initially assigned to small vs. large classes
in STAR of 6.7 students is comparable to that in the New York City data.

9Students who entered STAR schools before 3rd grade and were assigned to small classes in 3rd grade were
assigned to small classes in earlier grades as well. We find that assignment to a small class has similar effects of
end-of-3rd-grade test scores for those who entered STAR schools in 3rd grade (and thus were treated for only one
year) as for those who entered in earlier grades. This is a consequence of the rapid fade-out of treatment effects
on subsequent test scores documented in Figure 2. We therefore interpret the treatment effect on test scores as
the causal effect of being assigned to a small class in third grade when we construct an analogous observational
estimate in the NYC sample.

10We estimate standard errors for this and all other ESC estimates reported below using a bootstrap procedure,
where we resample the student-level observations with replacement B = 1,000 times, re-estimate both the
first-stage class-size effect τ̂S (to form residuals αS

i ) and the second-stage ESC OLS controlling for αS
i in each

replication, and compute standard errors as the empirical standard deviation of the resulting bootstrap estimates.
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We next use the ESC estimator to estimate treatment effects on subsequent outcomes. Figure

2 plots treatment effects on test scores in grades 3-8. The STAR experimental estimates (shown

in black squares) are positive in all grades, while the OLS estimates in the NYC data (orange

triangles) are all negative. The ESC estimates in grades 4-8 are all positive and very similar in

magnitude and temporal pattern to the STAR estimates. Notably, the ESC estimates capture

the well-known “fadeout” pattern in the STAR estimates – where the effects of interventions

in early grades on test scores diminish in later grades. The close correspondence between the

ESC estimates and the experimental estimates for the holdout outcomes (Y H
i ) of test scores in

grades 4-8 supports the latent unconfoundedness assumption and demonstrates the ability of

our approach to adjust for selection.

Finally, in the right panel of Figure 2, we turn to the primary outcome of interest – high

school graduation – which we observe in the observational but not experimental sample. The

ESC estimator implies that assignment to a small third grade class increases the probability of

graduating from a NYC high school by 0.69 percentage points (Column 3 of Table 1). Small

classes have 7 fewer students on average relative to a sample mean of 28 students; hence, a 25%

reduction in class size in third grade increases high school graduation rates by 0.69 pp.

In contrast, the OLS estimator yields a negative association between small class assign-

ment and high school graduation rates in the observational sample. Importantly, adjusting for

selection on observables by controlling flexibly for key demographic covariates in the observa-

tional sample – the interaction of indicators for gender, race and ethnicity, eligibility for free

or reduced-price lunch, and cohort – has little impact on the OLS estimates on test scores and

graduation rates (Figure 3, Appendix Table 2). This result demonstrates that the experimen-

tal selection correction can adjust for selection on dimensions that are typically unobserved in

standard administrative datasets.
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Figure 3: Effect of Controlling for Observables on Treatment Effect Estimates
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Notes: This figure shows how controlling for demographic observables influences the estimated effect of assign-
ment to a small 3rd-grade class on test scores (left panel) and high school graduation rates (right panel). “ESC”
refers to the Experimental Selection Correction estimate, and “OLS” denotes the Observational OLS estimate in
the NYC sample, constructed as described in the notes to Figure 2. All specifications include school and cohort
fixed effects. Estimates labeled “With Demog. Controls” additionally control for the interaction of indicators
for gender, race and ethnicity, eligibility for free or reduced-price lunch, and cohort, as well as an indicator for
missing the free lunch variable (in the NYC data). Vertical bars represent 95% confidence intervals.

Robustness. We find very similar estimated impacts on high school graduation rates when

focusing on specific demographic groups (e.g., by race or sex), as shown in Figure 4. These

findings allay the concern that differences in the demographic distribution between the STAR

and NYC samples may lead to violations of the external validity assumption. We also find that

the estimated impacts on high school graduation remain similar when we correct for selection

using all test scores from grades 3-8 instead of just 3rd grade scores (Figure 5). These findings

are consistent with the finding that treatment effects on test scores in grades 4-8 are very similar

in the NYC and STAR data once we adjust for selection using 3rd grade test scores (Figure 2).
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Figure 4: Heterogeneity of Treatment Effect Estimates on HS Graduation Across Subgroups
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Notes: This figure presents subgroup-specific estimates of the effect of being assigned to a small 3rd-grade
class on high school (HS) graduation rates. Each point corresponds to a point estimate obtained using either
the observational OLS or Experimental Selection Correction (ESC) estimator in the NYC data, constructed as
described in the notes to Figure 2. All specifications include school and cohort fixed effects. Estimates are
expressed as percentage-point changes in HS graduation rates. Vertical lines represent 95% confidence intervals.
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Figure 5: Robustness of ESC Estimates to Choice of Intermediate Outcomes
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Notes: This figure illustrates how the estimated effect of assignment to a small 3rd-grade class on high school
graduation rates varies with the intermediate outcomes used in the experimental selection correction procedure.
Green points with vertical bars plot ESC estimates accompanied by 95% confidence intervals. The first estimate
replicates the ESC estimate reported in Column 3 of Table 1, using only 3rd grade test scores for selection
correction. The remaining estimates use additional test scores from grades 4-8 as intermediate outcomes in the
selection correction procedure. The orange line shows the observational OLS estimate in the NYC sample from
Column 2 of Table 1 (which does not use intermediate outcomes and hence is constant across the figure). The
dashed orange line shows a 95% confidence interval for the OLS estimate.

Comparison to Surrogate Estimates. In Figure 6, we compare the ESC estimates to estimates

from a surrogate index approach [Athey et al., 2019]. To construct the surrogate-based estimates,

we multiply treatment effects on third grade test scores in the STAR sample by coefficients from

OLS regressions of the outcome of interest on third grade scores in the NYC sample (including

school and cohort fixed effects). The surrogate estimates on test scores in grades 4-8 are all

higher than the experimental estimates (though not significantly so), while the ESC estimates

match the experimental estimates more closely. This pattern is consistent with the education

literature on fadeout, which finds that treatment effects of early interventions on test scores

persist less than one would expect based on the serial correlation of test scores across grades,

violating the assumption that test scores in earlier grades provide surrogates for later outcomes.
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Accordingly, the ESC estimate yields an estimated treatment effect on high school graduation

that is about half as large as the surrogate-based estimate.

Figure 6: Comparison of Surrogate and ESC Estimates
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Notes: This figure compares the ESC estimates reported in Figure 2 to estimates that use third grade test scores
as a surrogate for subsequent outcomes. The surrogate estimates are constructed by multiplying treatment
effects on third grade test scores in the STAR sample by coefficients from OLS regressions of the outcome of
interest (test scores in later grades or HS graduation) on third grade scores in the NYC sample. The ESC and
experimental estimates reproduce the series plotted in Figure 2. See notes to Figure 2 for further details.

6 Conclusion

This paper has proposed a new method of combining experimental and observational data to

improve causal inference about a primary outcome of interest. We leverage the internal valid-

ity of the experimental data to implement a selection correction based on secondary outcomes

when estimating treatment effects on the primary outcome in the observational dataset. Our

estimator relies on a key new assumption that we term latent unconfoundedness, which requires

that the unobserved confounders that affect the primary and secondary outcomes are the same.
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Our approach strictly weakens the assumptions underlying the popular approach of using inter-

mediate outcomes as surrogates, yielding more credible estimates of causal effects when both

the treatment and primary outcome are observed in the observational dataset.

We apply our Experimental Selection Correction estimator to estimate the effects of 3rd

grade class size on test scores in later grades and high school graduation rates. In observational

data, we find wrong-signed estimates that are likely biased by unobserved selection. The ESC

estimator yields estimates that match holdout experimental estimates for test scores in later

grades and provides one of the first estimates of the causal effects of class sizes on high school

graduation rates in the U.S. – showing that a 25% reduction in class size in third grade increases

high school graduation rates by 0.7 pp.

As observational data become more widely available, it would be valuable to build on the

ideas proposed here by developing approaches to using experiments to correct for selection in

observational data. Recent econometric advances have extended the framework we propose here

in both identification and estimation—e.g., Meza and Singh [2024], Park and Sasaki [2024a,b],

Imbens et al. [2025]—but there remains substantial scope for further development. In particu-

lar, future work could seek to characterize and weaken the latent unconfoundedness condition,

potentially by leveraging multiple intermediate variables or partial identification strategies.11

Empirically, it would be useful to characterize settings where latent unconfoundedness is a good

approximation using validation studies in order to guide future applications.

11For example, the latent unconfoundedness assumption we use requires that all variation in students’ test
scores arises from unobservables that affect graduation rates as well, ruling out shocks that may affect test
performance but not later outcomes such as illness or noise on the day of the test. In practice, test-retest
reliability tends to be very high (exceeding 0.8), so such noise is likely minimal in our application. But in other
settings, noise in the intermediate outcome may be more substantial; in such cases, it may be possible to use
instrumental variables approaches to adjust for such noise.
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Appendix

A. Proofs

Proof of Lemma 1. To prove this result we show that we cannot infer from the joint distribution of
(Wi, Xi, Gi, Y

S
i , Y

P
i 1Gi=O), in combination with the assumptions, the distribution of Y P

i (1) conditional
on Xi and Gi = E. This distribution can be written as

fY P(1)|X,G=E(y|x) = fY P(1)|X,G=E,W=1(y|x)p(W = 1|X = x,G = E)

+fY P(1)|X,G=E,W=0(y|x)p(W = 0|X = x,G = E).

The data are not informative about the distribution of Y P
i (1) givenWi = 0, Xi andGi = E. Assumption

3 implies that this distribution is the same as the distribution of Y P
i (1) given Wi = 0, Xi and Gi = O,

but the data are not informative about that either. �

Proof of Theorem 1:12 To be clear here, we index the expectations operator by the random variable
that the expectation is taken over. By definition

τPO = EY P
i (1),Y P

i (0)

[
Y P
i (1)− Y P

i (0)
∣∣Gi = O

]
= EY P

i (1)

[
Y P
i (1)

∣∣Gi = O
]
−EY P

i (0)

[
Y P
i (0)

∣∣Gi = O
]
.

We focus on identification of the first term, which by iterated expectations can be written as

EY P
i (1)

[
Y P
i (1)

∣∣Gi = O
]

= EXi

[
EY P

i (1)

[
Y P
i (1)

∣∣Xi, Gi = O
]∣∣∣Gi = O

]
. (A.1)

Identification of the second term follows by the same argument. By Conditional External Validity
(Assumption 3), we can write the inner expectation as

EY P
i (1)

[
Y P
i (1)

∣∣Xi, Gi = O
]

= EY P
i (1)

[
Y P
i (1)

∣∣Xi, Gi = E
]
,

so that (A.1) is equal to

EXi

[
EY P

i (1)

[
Y P
i (1)

∣∣Xi, Gi = E
]∣∣∣Gi = O

]
. (A.2)

By iterated expectations this is equal to

EXi

[
EY S

i (1)

[
EY P

i (1)

[
Y P
i (1)

∣∣Y S
i (1), Xi, Gi = E

]∣∣∣Xi, Gi = E
]∣∣∣Gi = O

]
. (A.3)

By Conditional External Validity (Assumption 3), this is equal to

EXi

[
EY S

i (1)

[
EY P

i (1)

[
Y P
i (1)

∣∣Y S
i (1), Xi, Gi = O

]∣∣∣Xi, Gi = E
]∣∣∣Gi = O

]
. (A.4)

12We are grateful to Nathan Kallus and Xiaojie Mao for pointing out a mistake in an earlier version of the
proof of this theorem.
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By Latent Unconfoundedness (Assumption 4) this is equal to

EXi

[
EY S

i (1)

[
EY P

i (1)

[
Y P
i (1)

∣∣Y S
i (1),Wi = 1, Xi, Gi = O

]∣∣∣Xi, Gi = E
]∣∣∣Gi = O

]
. (A.5)

By the definitions Y P
i = Y P

i (Wi) and Y S
i = Y S

i (Wi) this is equal to

EXi

[
EY S

i (1)

[
EY P

i (1)

[
Y P
i

∣∣Y S
i ,Wi = 1, Xi, Gi = O

]∣∣∣Xi, Gi = E
]∣∣∣Gi = O

]
. (A.6)

Define

h(yS, x) ≡ EY P
i (1)

[
Y P
i

∣∣Y S
i = yS,Wi = 1, Xi = x,Gi = O

]
,

so that (A.6) is

EXi

[
EY S

i (1)

[
h(Y S

i (1), Xi)
∣∣Xi, Gi = E

]∣∣∣Gi = O
]
. (A.7)

Note that h(yS, x) is directly identified from the observational sample.
Because of the unconfoundedness in the experimental sample (Assumption 2), (A.7) is equal to

EXi

[
EY S

i (1)

[
h(Y S

i (1), Xi)
∣∣Wi = 1, Xi, Gi = E

]∣∣∣Gi = O
]
. (A.8)

By the definition of Y S
i = Y S

i (Wi), and because the conditional distribution of Y S
i (1) conditional on

Wi = 1, Xi, Gi = O is the same as the conditional distribution of Y S
i conditional on Wi = 1, Xi, Gi = O,

we can change the random variable that the expectation is taken over and write this as

EXi

[
EY S

i

[
h(Y S

i , Xi)
∣∣Wi = 1, Xi, Gi = E

]∣∣∣Gi = O
]
. (A.9)

The inner expectation

k(x) ≡ EY S
i

[
h(Y S

i , Xi)
∣∣Wi = 1, Xi = x,Gi = E

]
,

is identified from the experimental sample. The expectation

E[k(Xi)|Gi = O],

is identified from the observational sample, which completes the proof. �
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B. Alternative Approaches to Estimation

In this appendix, we present three approaches to estimation that are alternatives to the control function
approach described in the main text.

Imputation. In the imputation approach, we impute the missing primary outcomes in the experimen-
tal sample and then difference the average imputed outcome by treatment status in the experimental
sample, adjusted for pretreatment variables.
In the first step, we estimate the conditional mean of the primary outcome given the secondary outcome,
treatment and pre-treatment variables in the observational sample:

κ(w, x, yS) ≡ E
[
Y P
i

∣∣Wi = w,Xi = x, Y S
i = yS, Gi = O

]
.

In the second step we impute, for all units in the experimental sample, the primary outcome as
Ŷ P
i = κ̂(Wi, Xi, Y

S
i ). In the third step we use the standard program evaluation methods under uncon-

foundedness on the experimental sample with the imputed primary outcomes adjusted for differences
between treated and control units in Xi. This last step can be based on matching, regression adjust-
ment, (augmented) inverse propensity score weighting, and doubly robust methods, see for a general
discussion Imbens and Wooldridge [2009].
If in the experimental sample the treatment is completely random, we could in this step estimate the
average treatment effect in the experimental sample as the simple difference in average outcomes,

τ̂ imp,E =
1

NE
1

∑
i:Pi=E

Wiκ̂(1, Xi, Y
S
i )− 1

NE
0

∑
i:Pi=E

(1−Wi)κ̂(0, Xi, Y
S
i ),

although this would not be efficient in the presence of covariates, the same way the difference in means
estimator is not efficient in a randomized experiment with covariates.

Weighting. Another alternative is to estimate the average effect by differencing weighted averages
of outcome in the treated and control subsamples of the observational sample. The difference of
unweighted averages is not consistent for the average treatment effect because of the violation of
unconfoundedness in the observational sample. The weighting is used to correct for that. First estimate
the conditional distribution of (Y S

i ,Wi) in the observational and experimental sample as

fW,Y S|X,P (w, yS|x, p),

for all x ∈ X and p ∈ {E,O}. In the second step construct the weights for all units in the observational
sample as a function of (Wi, Xi, Y

S
i ):

λi =
fW,Y S|X,P (Wi, Y

S
i |Xi,E)

fW,Y S|X,P (Wi, Y S
i |Xi,O)

.

These weights adjust for the differences between the observational and experimental sample.
Assuming we have completely random assignment in the experimental sample, we can in the third step
estimate the average treatment effect as

τ̂weight =

∑
i:Pi=O YiWiλi∑

i:Pi=O(1−Wi)λi
−
∑

i:Pi=O(1−Wi)λi∑
i:Pi=OWiλi

.
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For efficiency, we need the weights that adjust for the non-randomness in the experimental sample. By
the maintained assumptions, this requires only adjusting for the differences in pre-treatment variables.
Let the propensity score be

e(x, g) ≡ pr(Wi = 1|Xi = x,Gi = g).

This leads to

τ̂weight =

∑
i:Pi=O YiWiλi/e(Xi,E)∑

i:Pi=O(1−Wi)λi/e(Xi,E)
−
∑

i:Pi=O(1−Wi)λi/(1− e(Xi,E))∑
i:Pi=OWiλi/(1− e(Xi,E))

.

Influence Function. A third approach is to directly estimate an influence function and use that as
the basis for an efficient estimator. There are some theoretical advantages to influence-function based
methods in terms of robustness to misspecification of some of the nonparametric components. See
Chernozhukov et al. [2022] for general discussion and Chen and Ritzwoller [2023] for a discussion in
this setting. Chen and Ritzwoller [2023]. Here we re-write their estimator in the notation of the current
paper.
To characterize the influence function estimator we need to define a number of additional functions:

κ(w, x, yS) ≡ EP [Y P
i |Wi = w, Y S

i = ys, Xi = x,Gi = O],

κ(w, x) ≡ EP [κ(Wi, Y
s
i , Xi)|Wi = w,Xi = x,Gi = 0],

ρ(w, x, yS) ≡ pr(Wi = w|Y S(w) = ySXi = x,Gi = E),

π ≡ pr(Gi = O),

r(x) ≡ P (G = 1|X = x),

e(x, g) ≡ pr(Wi = 1|X = x,Gi = g),

ν(x, yS) = E[Yi|Xi = x, Y S
i = yS, Gi = E],

and

η(w, x) = E[ν(Y S
i , Xi)|Wi = w,Xi = x,Gi = E].

Then the influence function is

ψ(yp, ys, w, x, g) =
1g=O

π

(
w(yp − κ(1, ys, x))

ρ(1, ys, x)
− (1− w)(yp − κ(0, ys, x))

ρ(0, ys, x)
+ (κ(1, x)− κ(0, x)− τ

)

+
1g=E

π

(
r(x)

1− r(x)

(
w(ν(x, ys)− η(1, x))

e(x,O)
− (1− w)(ν(x, ys)− η(0, x))

1− e(x,O)

))
,

and the influence function based estimator is based on averaging an estimated version of this:

τ̂ =
1

N

N∑
i=1

(
1g=O

π̂

(
w(yp − κ̂(1, ys, x))

ρ̂(1, ys, x)
− (1− w)(yp − κ̂(0, ys, x))

ρ̂(0, ys, x)
+ (κ̂(1, x)− κ̂(0, x)

)

+
1g=E

π̂

(
r̂(x)

1− r̂(x)

(
w(ν̂(x, ys)− η̂(1, x))

ê(x,O)
− (1− w)(ν̂(x, ys)− η̂(0, x))

1− ê(x,O)

)))
.
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C. Stata Code for Implementing ESC Estimator

*Data Structure: stacked dataset with observations for experimental

sample (exp =1) and observational sample (obs =1)

*Variables: treatment (treatment indicator),score (secondary outcome),

graduation (primary outcome)

*** Implementing Experimental Selection Correction Estimator

*Step 1: Estimate Treatment Effect on Secondary Outcome in

Experimental Sample

reg score treatment if exp==1

*Step 2: Estimate Selection Correction Term in Observational Sample

predict score_pred

gen selection = score - score_pred if obs==1

*Step 3: Estimate Treatment Effect on Primary Outcome in Observational

Sample

reg graduation treatment selection if obs==1

*Note: conventional standard errors are invalid; bootstrap is needed

*** Surrogate Estimator (for comparison)

*Step 1: Predict Primary Outcome Based on Secondary Outcome in

Observational Sample

reg graduation score if obs==1

predict graduation_pred

*Step 2: Estimate Treatment Effect on Predicted Primary Outcome in

Experimental Sample

reg graduation_pred treatment if exp==1

See GitHub Repository for an R version of this code13

13https://github.com/OpportunityInsights/Experimental-Selection-Correction-Replication-Code.

git.
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Appendix Table 1: Summary Statistics for STAR and New York Data

STAR New York

Variable Mean Std. Dev. Mean Std. Dev.

A. Student Background Variables
Female (%) 47.1 49.9 50.0 50.0
Eligible for Free or Reduced-Price Lunch (%) 60.6 48.9 80.8 39.4
Missing Free Lunch Indicator (%) 1.5 12.2 43.2 49.5
Graduated from NYC Public High School (%) – – 51.4 50.0
Race/Ethnicity (%)
White 62.8 48.3 15.7 36.3
Black 36.4 48.1 33.9 47.3
Asian 0.28 5.3 11.9 32.4
Hispanic 0.18 4.3 38.1 48.6
Native American 0.1 3.5 0.3 5.8
Other 0.17 4.2 – –

B. Classroom Characteristics
Class Size in Grade 3 21.3 4.4 25.1 4.5
In Small Class at Grade 3 (%) 18.7 39.0 58.9 49.2

Size Given Large Class 23.9 2.4 29.2 2.2
Size Given Small Class 15.7 1.7 22.2 3.2

Initial Assignment to Small Class Size (%) 26.1 43.9 – –
Size Given Large Class Assignment 23.0 3.3 – –
Size Given Small Class Assignment 16.3 2.9 – –

Number of Observations 11,599 1,758,838

Notes: This table presents summary statistics for the analysis samples we use from two datasets: Project
STAR (Experimental) and New York City school district (Observational). Panel A presents student background
variables, including the percentage of female students, eligibility for free or reduced-price lunch, high school
graduation rates, and race and ethnicity. High school graduation is omitted for the STAR dataset (denoted
by “–”) because it is not observed. Panel B reports classroom characteristics, with all statistics calculated as
student-weighted means. The variable “In Small Class at Grade 3” indicates whether a student was actually
placed in a small class, while “Initial Assignment to Small Class Size” captures the student’s original randomized
assignment in the STAR experiment. The table also reports average class size conditional on actual classroom
assignment (small or large) and conditional on initial assignment status. For the NYC dataset, the reported
sample size corresponds to the union of the variables examined—that is, the number of students with at least
one non-missing variable (e.g., Grade 3–8 test scores, graduation outcomes, or demographic covariates).
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Appendix Table 2: Treatment Effect Estimates on HS Graduation: Comparison of Estimators

OLS OLS w/ Controls ESC ESC w/ Controls

Assigned to Small Class −1.76 −1.53 0.69 0.74
in 3rd Grade (Wi) (0.29) (0.28) (0.34) (0.34)

N 368,339 368,339 368,339 368,339

Notes:In this table, “OLS” refers to the ordinary least squares estimator based exclusively on the observa-
tional data, while “ESC” denotes the Experimental Selection Correction method implemented by combining
experimental and observational data. Columns 1 and 3 control for school and cohort fixed effects. Columns 2
and 4 additionally control for the interaction of indicators for gender, race and ethnicity, eligibility for free or
reduced-price lunch, and cohort, as well as an indicator for missing the free lunch variable (in the NYC data).
Bootstrapped standard errors are reported in parentheses.
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Appendix Figure 1: Experimental Selection Correction Model with Holdout Outcome

A. Experimental Data

Class Size (Wi) 3rd Grade Test Scores (Y S
i ) 8th Grade Test Scores (Y H

i ) HS Graduation (Y P
i )

B. Observational Data

Class Size (Wi) 3rd Grade Test Scores (Y S
i ) 8th Grade Test Scores (Y H

i ) HS Graduation (Y P
i )

Unobserved Confounder

Notes: This figure extends the framework presented in Figure 1 by introducing a holdout outcome, Y H
i , repre-

senting 8th-grade test scores. Panel A illustrates the experimental data, where both the holdout outcome Y H
i

and the short-term outcome Y S
i are observed under randomized assignment to class size Wi. Panels B illustrates

the observational data, where Y H
i is also observed. Dashed arrows represent potential unobserved confounding

in the observational setting.
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